
Semaphores and their

implementation

158

Reminder: The Semaphore concept

A semaphore is a shared integer variable. Its value is positive or 0 and it

can only be accessed through the two operations wait(s) and signal(s),

where s is an identifier representing the semaphore.

• wait(s) decrements s if s > 0 ; if not, the process executing the

operation wait(s) is suspended.

• signal(s) increments s. The execution of signal(s) can have as result

(possibly delayed) that a process waiting on the semaphore s resumes

its execution. Executing a wait(s) or a signal(s) operation is done

without any possible interaction (atomically).

159

Mutual exclusion with semaphores

Semaphores make a very simple implementation of mutual exclusion

possible.

semaphore s = 1;

Process 1 :

while (True)

{ nc1: /* non critical

section */ ;

wait(s);

crit1: /* critical section */ ;

signal(s);

}

Process 2 :

while (True)

{ nc2: /* non critical

section */

wait(s);

crit2: /* critical section */

signal(s)

}

160

Implementing Semaphores

• Semaphores are implemented in the system kernel.

– The semaphore values are kept in a table stored in kernel memory.

A semaphore is identified by a number corresponding to a position

in this table.

– There are system calls for creating or freeing semaphores, as well

as for executing the wait and signal operations. These operations

are executed in supervisor mode and hence atomically (interrupts

are disabled in supervisor mode).

• In ULg03, to execute for instance a wait operation, the arguments of

the system call, i.e. the semaphore number and a code WAIT, are

placed on the stack. Assuming that the semaphore number is

contained in r0, this can be done as follows.

PUSH(r0) | 2nd argument

CMOVE(WAIT,r1) | 1st argument

PUSH(r1)

SVC() | system call

161

The SVC handler

Before getting into the details of the handlers for semaphore operations,

we will look at the general handler needed for the SVC instruction. The

handler is reached through the following stub.

h_stub: ST(r0, User, r31) | save

ST(r1, User+4, r31) | the registers

. . .

ST(r30, User+30*4, r31)

CMOVE(KStack, SP) | Load the system SP

BR(Svc_handler,LP) | Call the handler

LD(r31, User, r0) | restore

LD(r31, User+4, r1)

LD(r31, User+30*4, r30)

JMP(XP) | return to application

Note that the address saved in XP is that of the instruction following SVC.

162

The SVC handler (continued)

• The program Svc_handler identifies the nature of the call and switches

to the corresponding routine.

• One difficulty is that the arguments of SVC are on the stack of the

process that has executed the system call, i.e. in its virtual space.

• These addresses must thus be translated before being used.

163

The SVC handler:
data structures

The data structures used by the kernel are the following.

struct Mstate { int R0; ..., R30;} User;

/* The saved state of the current process */

struct PTentry {short valid, resid ; int PhysPage;};

/* An entry in the page table */

struct PTentry PageMap[262144];

/* The page table of the current process, 2^18 entries */

struct PD {struct Mstate state ; int status, semwait ;

struct PTentry PageMap[262144];} Proctbl[N];

/* The process table with page table, status, and the address

of a blocking semaphore if any */

int sem[K]; /* The table of semaphore values */

int Cur; /* The index of the current process */

164

The SVC handler:
translating virtual addresses

To have access to the stack of the process that has executed the

instruction SVC, the system needs to translate into a physical address the

address contained in r29 (SP). Indeed, even if the page table cache is up

to date, address translation is not done by the hardware since we are in

supervisor mode. This address translation can be done as follows.

int Vmap(int Vaddress)

{ int VpageNo, PageNo, Offset;

VpageNo = Vaddress>>14; Offset = Vaddress & 16383;

if (PageMap[VpageNo].valid == 0 || PageMap[VpageNo].resid == 0)

Pagerror(VpageNo);

PageNo = PageMap[VpageNo].PhysPage ;

return((PageNo<<14) | Offset);

}

165

The SVC handler:
general structure

The SVC handler extracts the code identifying the call and switches to the

corresponding function.

Svc_handler()

{ int code;

code = *Vmap(User.R29-4)

switch (code)

{

case WAIT : Wait_h(*Vmap(User.R29-8)); break;

case SIGNAL : Signal_h(*Vmap(User.R29-8)); break;

....

}

}

The addresses of the arguments of the system call are not computed

exactly as in the case of a procedure call since, in the case of a system

call, nothing is added to the stack of the calling process after the call.

166

The handlers Wait_h and Signal_h: first version

Wait_h(int semno)

{ if (sem[semno] <= 0) {

User.R30 = User.R30 - 4; /* SVC will be executed again */

Proctbl[Cur].status = WAIT; Proctbl[Cur].semwait = semno;

scheduler();

} else

sem[semno] = sem[semno] - 1;

}

When the value of the semaphore is not positive, the process is

suspended; it will reexecute the SVC when it is reactivated.

167

Signal_h(int semno)

{ for (i = 0; i<N; i++) {

if (Proctbl[i].status == WAIT && Proctbl[i].semwait == semno)

Proctbl[i].status = RUN;

}

sem[semno] = sem[semno] + 1;

}

The processes that are waiting on the semaphore are reactivated and the

semaphore is incremented.

All the waiting processes will reexecute the system call wait; the one that

will find a nonzero value for the semaphore can be anyone of these.

For mutual exclusion, this implementation will not guarantee that each

process can access its critical section.

168

The handlers Wait_h and Signal_h: second version

Wait_h(int semno)

{ if (sem[semno] <= 0) {

Proctbl[Cur].status = WAIT; Proctbl[Cur].semwait = semno;

scheduler();

} else

sem[semno] = sem[semno] - 1;

}

The system call is not reexecuted when a process leaves its wait state.

Indeed, the handler for signal will take care of reactivating a waiting

process if there is one, without the semaphore being incremented and

decremented.

169

Signal_h(int semno)

{ int i,wokeup = 0;

for (i = 0; i<N; i++) {

if (Proctbl[i].status == WAIT && Proctbl[i].semwait == semno) {

Proctbl[i].status = RUN;

wokeup = 1; break;

}

}

if (wokeup == 0) sem[semno] = sem[semno] + 1;

}

This implementation guarantees that, if only two processes use the

semaphore, none will wait indefinitely.

A fair implementation for more than two processes will use a wait queue

per semaphore for handling the waiting processes.

170

Implementing semaphores on a multiprocessor

• On a multiprocessor machine, execution in supervisor mode does not

guarantee mutual exclusion since it can occur simultaneously on more

than one processor.

• Another mechanism for implementing mutual exclusion is thus needed.

• Atomic memory reads and writes are not sufficient for a practical

solution.

• One thus introduces a special instruction that can atomically read

AND modify memory.

171

The instruction “Test and Clear”

This instruction copies a memory word to a register and sets it to 0.

TCLR(Ra,literal,Rc) : PC← PC+ 4
EA← Reg[Ra] + SEXT(literal)
Reg[Rc]←Mem[EA]
Mem[EA]← 0

It’s opcode is chosen to be 0x04

.macro TCLR(Ra,Lit,Rc) ENC_LIT(0b000100,Ra,Rc,Lit)

172

The microcode of TCLR

TCLR(Ra, Literal, Rc) (supervisor mode)

Opcode = 000100 IRQ = * PC31 = 1

Phase Fl. Latch UC/D ALU LD DR PC+ SVR

flags F,Cin,M SEL SEL

00000 * 1 0 000000 0011 0001 0 0 SMAR <- Ra
00001 * 1 0 000000 0001 0100 0 0 A <- SRAM
00010 * 1 0 000000 0010 0010 0 0 B <- Lit
00011 * 1 0 000000 0011 0000 0 0 SMAR <- Rc
00100 * 1 0 100110 0100 0011 0 0 DMAR <- A+B
00101 * 1 0 000000 0101 0101 0 0 SRAM <- DRAM
00110 * 1 0 001101 0110 0011 0 0 DRAM <- 0
00111 * 1 0 000000 0100 0110 1 0 DMAR <- PC; PC+
01000 * 1 0 000000 0000 0101 0 0 INSTREG <- DRAM

173

Mutual exclusion with TCLR

It is quite simple to implement mutual exclusion with TCLR.

wait: TCLR(r31,lock,r0)

BEQ(r0,wait)

... section critique ...

CMOVE(1,r0)

ST(r0,lock,r31)

This implementation uses an active wait and does not guarantee fairness

among the waiting processes.

It is not used to implement mutual exclusion in general, but it is perfectly

adequate for implementing semaphores on a multiprocessor machine.

174

The ”buffer” or ”producer-consumer” problem

A Producer process sends a stream of information to a Consumer process.

This stream of information goes through a buffer modeled as a table in

shared memory accessed with the two functions (append and take).

/* shared memory */

int in = 0, out = 0;

int buf[N];

append(int v)

{ buf[in]= v;

in = (in+1) % N;

}

int take()

{ int v;

v = buf[out];

out = (out+1) % N;

return v;

}

As such these operations allow writing in a full buffer or reading from an

empty one. they need to be synchronized.

175

The buffer problem:

Synchronizing the consumer

To prevent the consumer from taking an element from an empty buffer, a

semaphore that counts the number of elements in the buffer is used.

/* shared memory */

int in, out = 0;

int buf[N];

semaphore n = 0;

append(int v)

{ buf[in]= v;

in = (in+1) % N;

signal(n);

}

int take()

{ int v;

wait(n);

v = buf[out];

out = (out+1) % N;

return v;

}

It is still necessary to limit the producer when the buffer is full.

176

The buffer problem:

Synchronizing the consumer and the producer

A second semaphore, initialized to the number of empty slots in the

buffer, is used to synchronize the producer.

/* shared memory */

int in, out = 0;

int buf[N];

semaphore n = 0, e = N;

append(int v)

{ wait(e);

buf[in]= v;

in = (in+1) % N;

signal(n);

}

int take()

{ int v;

wait(n);

v = buf[out];

out = (out+1) % N;

signal(e);

return v;

}

177

The buffer problem:

Mutual exclusion of the operations

If there are several producers and consumers, it is necessary to ensure that

the buffer manipulation operations are performed in mutual exclusion.

This can be done with an additional semaphore.

/* shared memory */

int in, out = 0; int buf[N];

semaphore n = 0, e = N, s = 1;

append(int v)

{ wait(e);

wait(s);

buf[in] = v;

in = (in+1) % N;

signal(s);

signal(n);

}

int take()

{ int v;

wait(n);

wait(s);

v = buf[out];

out = (out+1) % N;

signal(s);

signal(e);

return v;

}

178

Binary semaphores

• A binary semaphore is a semaphore whose value can only be 0 or 1.

• Thus type of semaphore makes it possible to synchronize processes,

but not to count.

• A general semaphore may nevertheless be simulated by a binary

semaphore and a counter.

• Some problems can nevertheless be caused by the split between the

semaphore and the counter.

179

The buffer with binary semaphores

/* shared memory */

int in = 0, out = 0, count = 0;

int buf[N];

semaphore n = 0, e = 0, s = 1;

append(int v)

{ wait(s);

if (count == N) {

signal(s);wait(e);wait(s);}

buf[in] = v; in = (in+1)%N;

count = count+1;

if (count == 1) signal(n);

signal(s);

}

int take()

{ int v;

wait(s);

if (count == O) {

signal(s);wait(n);wait(s);}

v = buf[out];out = (out+1)%N;

count = count-1;

if (count == N-1) signal(e);

signal(s); return v;

}

This solution is not correct since it is possible to execute append; take;

take. The problem is that the presence of an element is signaled twice: by

setting count to 1 and by the operation signal(n).

180

The buffer with binary semaphores:
Solution for one producer and one consumer

/* shared memory */

int in = 0, out = 0, count = 0;

int buf[N]; int ewait = 0 ,nwait = 0;

semaphore n = 0, e = 0, s = 1;

append(int v)

{ wait(s);

if (count == N) {

ewait = 1; signal(s);

wait(e);wait(s);ewait = 0;}

buf[in] = v; in = (in+1)%N;

count = count+1;

if (nwait > 0) signal(n);

signal(s);

}

int take()

{ int v;

wait(s);

if (count == O) {

nwait = 1; signal(s);

wait(n);wait(s);nwait = 0;}

v = buf[out];out = (out+1)%N;

count = count-1;

if (ewait > 0) signal(e);

signal(s); return v;

}

181

• To avoid signaling twice, signal(n) or signal(e) are only executed if a

process is waiting.

• One can imagine extending this solution to several producers and

consumers by counting the number of waiting processes.

• However, one must for example avoid a situation in which a second

consumer overtakes a consumer that has just been allowed to proceed

(has been released) and consumes the element intended for this

consumer.

• This can be done by transferring mutual exclusion to the process that

has been released.

182

The buffer with binary semaphores:
Solution for several producers and consumers

/* shared memory */

int in = 0, out = 0, count = 0;

int buf[N]; int ewait = 0 ,nwait = 0;

semaphore n = 0, e = 0, s = 1;

append(int v)

{ wait(s);

if (count == N) {

ewait++;signal(s);wait(e);

ewait--;}

buf[in] = v;in = (in+1)%N;

count = count+1;

if (nwait > 0) signal(n);

else signal(s);

}

int take()

{ int v;

wait(s);

if (count == O) {

nwait++; signal(s);wait(n);

nwait--;}

v = buf[out];out = (out+1)%N;

count = count-1;

if (ewait > 0) signal(e);

else signal(s);

return v;

}

183

Conclusions on semaphores

• Semaphores are an excellent mechanism for handling processes that

have to be suspended (put in a wait state).

• When suspending processes is combined with manipulating a counter,

semaphores are perfectly well adapted.

• Attempting to use binary semaphores shows that difficulties can occur

when waiting implemented with semaphores is combined with

manipulating another data structure.

• It would be useful to have a systematic approach for handling this

type of problem.

184

