DC machines

Transforms mechanical energy into electric energy with DC voltage and current (DC generator or dynamo), or conversely (DC motor)
DC generators

2 poles

Magnetic circuit: stator + rotor + airgap

Inductor or stator: 2p poles with excitation windings carrying DC current

Armature or rotor:
- stack of thin magnetic sheets (some tenth of a mm) (perpendicular to the machine axis to reduce eddy currents) ...
- ... supporting conductors in which electromotive forces (e.m.f.s) appear when the armature rotates \(\mathbf{e} = \mathbf{v} \times \mathbf{b} \) ...
- ... these e.m.f.s are time-varying and change sign each time the collector crosses a neutral line (bissector between 2 successive poles)

Collector: copper strips isolated from each other, and connected to equidistant points of the armature winding. Fixed brushes slide on the collector and rectify (mechanically) the e.m.f.s

4 poles

DC machines
No-load characteristic

Variation of the voltage E_v as a function of the excitation current I_e, at constant speed and with no delivered current

$E_v = f(I_e)$ with \[
\begin{aligned}
\text{speed } \dot{\theta} &= \text{constant} \\
I_a &= 0
\end{aligned}
\]

$E_v = k_E \, \dot{\theta} \, \Phi_V(I_e)$

Magnetic flux produced by the inductor and seen by the armature winding

(1) First magnetization
(2) Decreasing I_e
(3) Increasing I_e

Nonlinear with hysteresis
Armature reaction

Armature reaction (magnetic)

Magnetic phenomena due to the currents in the armature

1. Neutral line shifted (rotated) in the rotation direction ⇒ decrease of the e.m.f.

2. Local magnetic field reduction (entry part) and increase (exit part) not compensated due to nonlinearity ⇒ flux and e.m.f. reduction (+ incr. p_{mag})

\[E = E_V - \psi(I_a) \]
e.m.f. with load armature reaction

\[\psi(I_a) = k_E \dot{\theta} \Delta \Phi(I_a) \]

DC machines
Armature reaction

Total armature reaction

\[\Psi(I_a) = \psi(I_a) + R_a I_a \]

Compensating winding

Reduction of the armature reaction

Shift of the brushes w.r.t. neutral axis

disadvantages:
- for a single value of \(I_a \)
- shift direction depends on rotation direction
- shift direction depends on operating mode (generator or motor)
Exterior characteristics

Exterior characteristic of a generator

Variation of delivered voltage U in terms of the delivered current I, at constant speed and excitation circuit

$U = f(I)$ with

\[
\begin{aligned}
\text{speed } \dot{\theta} &= \text{constant} \\
\text{fixed excitation circuit}
\end{aligned}
\]

Excitation type...

independent

series

shunt

compound

DC machines
Independent excitation generator

\[I = I_a \]
\[U = E_v(I_e) - \psi(I) - R_a I \]

\(R_a \approx 0.1 \Omega \) (110V/50A machine)

Compensated armature reaction

Delivered voltage quasi independent of delivered current → Voltage source

\[\Psi(I) = \psi(I) + R_a I \]

Excitation current \(I_e \) modification

+ \(\Psi(I_e) \) ... max. in the magnetization curve corner

Speed modification

DC machines
Series excitation generator

\[I = I_a = I_e \]
\[U = \mathcal{E}_V(I) - \psi(I) - (R_a + R_s)I \]

\(R_s \ll \) since \(I_e = I \) is high coherent: section \(>, n_s < \)

\[\Psi(I) = \psi(I) + (R_a + R_s)I \]

Speed modification

Inductor shunting

Quasi-linear

U almost fixed

I almost constant useful zone

Current source

DC machines
Shunt excitation generator

\[I = I_a - I_e \]
\[U = E_v(I_e) - \psi(I_a) - R_d I_a \]
\[U = R_d I_e \]

\[\psi(I_a) = \psi(I_a) + R_d I \]

Picou construction

- \(E_v(I_e) \) & \(\psi(I_a) \) known
- \(R_d I_e = U(I_e) \)

For \(I_{a1} \) (point by point procedure)
- \(\psi(I_a) \rightarrow \psi(I_a) + R_d I_e \equiv E_{v1} \) & \(E_{v2} \)
- \(I_{el1} \) & \(I_{e2} \) → \(U_1 \) & \(U_2 \)

\[I = I_a - I_e = I_a - \frac{U}{R_d} \]

- \(R_d \gg \) to reduce Joule losses
- \(I_e < \Rightarrow n_s > \)

DC machines
Shunt excitation generator

Exterior characteristic

Delivered voltage almost independent of the delivered current → Voltage source

Operating point of the generator driving a resistance R

... the voltage varies however more than for the generator with independent excitation
Shunt excitation generator

Speed modification

If the speed is too low or if R_d is too large
\rightarrow no operating point

Excitation circuit modification

Effect of hysteresis

2 branches:
I_e increasing and decreasing

Short-circuit current

DC machines
Compound excitation generator

Mixed excitation: shunt inductor and series inductor wound on the same poles

\[\text{m.m.f.} = n_d I_e \pm n_s I_a = n_d \left(I_e \pm \frac{n_s}{n_d} I_a \right) = n_d I_f \]

\[U = E_v(I_f) - \Psi(I_a) \]

\[U = R_d I_e = R_d \left(I_f \pm \frac{n_s}{n_d} I_a \right) \]

(4) hypercompound \((n_s >>) \)
(3) concordant compound (same direction m.m.f.)
(2) shunt dynamo
(1) antagonist compound (opposite m.m.f.)

\[E_v(I_f) = \Psi(I_a) + R_d \left(I_f \pm \frac{n_s}{n_d} I_a \right) \]
Self-starting generator

Self-starting is possible thanks to the remanent magnetization of the inductor

Example: shunt generator

Condition: $R_d + R_a$ not too large!
DC network connection

Conditions:
- \(E \approx U \)
- \(E \) and \(U \) in opposition

After connexion (1):

\[
I_a = \frac{E(I_e, I_a) - U}{R_a}
\]

If \(E << I_a >> \)

Then, increase \(E \) (2) \(\Rightarrow \) the generator produces energy

Slope should be large (to reduce the current variations due to voltage perturbations):
- \(\Rightarrow \) compound antagonist generator OK

If \(E \) decreases:
- \(\Rightarrow \) the generator receives energy (motor for shunt and compound machines!)*
DC motors

Main principle

Excitation current I_e and armature current I_a

The armature conductors are subjected to the magnetic flux density created by the inductor

... hence to the Laplace force $f = j \times b$

... hence to a torque that tends to make the armature rotate

Electromotive force (e.m.f.)

... in the armature conductors as soon as they rotate, opposed to the current

Total e.m.f. (E) on brushes is equal to the integral of the electromotive field along the armature conductors

$U = E + R_a I_a$
Armature reaction

\[E = E_v - \psi(I_a) \]

e.m.f. with load

\[\psi(I_a) = k_E \dot{\theta} \Delta \Phi(I_a) \]

\[U = E + R_a I_a \]

DC motor

\[\Psi(I_a) = \psi(I_a) - R_a I_a \]

\[U = E - R_a I_a \]

DC generator

\[\Psi(I_a) = \psi(I_a) + R_a I_a \]

Total armature reaction

DC machines
Motor torque

\[U = E + R_a I_a = E_v - \psi(I_a) + R_a I_a \]

- Electric power provided to the armature
- Electromagnetic power
- Joule losses in the armature

Electric power

\[U I_a = E I_a + R_a I_a^2 = (E_v - \psi(I_a)) I_a + R_a I_a^2 \]

Electromagnetic torque

\[C = \frac{P_{elm}}{\dot{\theta}} = \frac{E I_a}{\dot{\theta}} \]

\[C = k_E \Phi(I_e, I_a) I_a = k_E [\Phi_v(I_e) - \Delta \Phi(I_a)] I_a \]

DC machines
Mechanical characteristics

Machanical characteristic of a motor

Motor speed in terms of the electromagnetic torque, with fixed voltage and excitation circuit

\[\dot{\theta} = f(C) \quad \text{with} \quad \begin{cases} U = \text{constant} \\ \text{fixed excitation circuit} \end{cases} \]

Excitation type...

- **independent or shunt**
- **series**
- **compound**

DC machines
Shunt excitation motor

\[C = k_E \left[\Phi_v(I_e) - \Delta \Phi(I_a) \right] I_a \]
\[= C_0 f(I_e, I_a) \]

with \((I_e \text{ constant})\)

\[f(I_e, I_a) = \frac{\Phi_v(I_e) - \Delta \Phi(I_a)}{\Phi_v(I_e)} \leq 1 \]

\(C_0 = \text{torque produced by the motor if there was no armature reaction}\)

\[U = E + R_a I_a = k_E \dot{\theta} \left[\Phi_v(I_e) - \Delta \Phi(I_a) \right] + R_a I_a \]

\[\dot{\theta} = \frac{U - R_a I_a}{k_E \left[\Phi_v(I_e) - \Delta \Phi(I_a) \right]} = \dot{\theta}_0 \frac{1}{f(I_e, I_a)} \]

Speed almost independent of torque
Shunt excitation motor

Stable and unstable zones

Influence of I_e

Small perturbation: e.g. speed increase

- From P: motor torque $P'' <$ resisting torque P' ⇒ speed decreases, back to P ⇒ stable

- From Q: motor torque $Q'' >$ resisting torque Q' ⇒ speed increases! ⇒ unstable

Limited speed range (saturation)

DC machines
Shunt excitation motor

Influence of the voltage U

$$\dot{\theta} \approx \frac{U}{k_E \Phi_V(I_e)}$$

Poor efficiency!

+ power electronics...

High dynamic torque control (since $\lambda_a <<$)

DC machines
Series excitation motor

\[C = k_E \Phi(I_a) I_a \]
\[U = k_E \dot{\Phi}(I_a) + (R_a + R_s) I_a \]

Non saturated machine

\[C \approx k_E \lambda_M I_a^2 \]
\[U \approx k_E \lambda_M \dot{\Phi} I_a + (R_a + R_s) I_a \]

Saturated machine

\[C \approx k_E \Phi_S I_a \]
\[U \approx k_E \Phi_S \dot{\Phi} + (R_a + R_s) I_a \]

No load ⇒ runaway!

Maximum current!
Series excitation motor

Influence of the voltage source U

Shunting the inductor

$\Phi(I_e) \approx \lambda_M I_e = \lambda'_M I_a \leq \lambda_M I_a = \Phi(I_a)$

Typical use

Electric traction and lifts (large startup torque)

+ power electronics...

DC machines
Series excitation motor

Braking

\[C = k_E \Phi(I_a) I_a \]

Change the sign of the torque to work as a brake

Electric power changes sign (recovers energy)

Different modes
Mixed excitation: shunt and series inductor wound on the same poles

\[\text{m.m.f.} = n_d I_e \pm n_s I_a \]

\[= n_d \left(I_e \pm \frac{n_s}{n_d} I_a \right) \]

\[= n_d I_f \]
Zero speed at startup \Rightarrow zero e.m.f. E

Induced current I_a limited only by the armature resistance R_a

Startup rheostat in series with the armature (to limit I_a)

Shunt motor

Series motor

$$I_a = \frac{U - E}{R_a} = \frac{U - k_E \dot{\Phi}}{R_a}$$

(One allows $I_{as} = 1.5 I_{an}$)

Start up rheostat
(value progressively reduced down to short-circuit)
Inverting the rotation direction

Shunt motor

\[C = k_E \Phi(I_e) I_a \]

Series motor

Modify the direction of the current in the excitation circuit w.r.t. the rotor

Torque changes sign

Same direction

Opposite direction

DC machines
Losses in DC machines

- **Mechanical losses**
 - friction losses in bearings ($\div v$) ($v = \text{speed}$)
 - windage losses ($\div v^2$)
 - friction losses from brushes on the collector ($\div v$)

- **Magnetic losses**
 - eddy current losses in armature ($\div v^2$, $\div b_{\text{max}}^2$)
 - hysteresis losses in armature ($\div v$, $\div b_{\text{max}}^{1.5 \rightarrow 2}$)

- **Electric losses**
 - Joule losses in armature, inductor and brushes ($\div I^2$, function of temperature)

- **Supplementary losses**
 - due to skin effect in the rotor and sparks at brushes/collector contact
 - increased magnetic losses due to the magnetic reaction